
Unix Scripting
Michael Schatz

Sept 3, 2013
QB Bootcamp Lecture 4

Outline

Part 1: Overview & Fundamentals
Part 2: Sequence Analysis Theory
Part 3: Genomic Resources

Part 4: Unix Scripting

Part 5: Example Analysis

How does scientific software operate?

•  The software we need to run is very specialized, there is no ‘analyze genome’
button in Excel
•  Data files are huge, so probably wouldn’t want one anyways

•  It takes a lot of work (and time/money) to create a graphical interface to
software, so most scientific software uses a ‘command line’ interface
•  Important to become comfortable using command line tools

•  Scientific analyses tend to use workflows consisting of several applications
where the output of one phase becomes the input to the next
•  Develop a workflow for dataset X, apply again to dataset Y

Input:

Raw data,
Parameters

Program
A

Output 1:
Intermediate

Result

Program
B

Output 2:
Final Result

Where is the command line?

•  Your Mac has a very powerful command line interface hidden just beneath the
graphical environment
•  This command line interface is (basically) the same as that used by our

scientific cluster BlackNBlue
•  Big data files are stored on our central storage system BlueArc

•  This environment has a universe of programs you can use to manipulate files
and data in novel ways
•  Learning to use this environment is a lot like learning a new language
•  http://korflab.ucdavis.edu/Unix_and_Perl/index.html

File Hierarchy
Files are stored in nested directories (folders) that form a tree
•  The top of the tree is called the root, and is spelled ‘/’

•  Your home directory (on mac) is at
 /Users/username

•  Command line tools are at
/bin/
/usr/bin/
/usr/local/bin/

•  A few special directories have shortcuts
~ = home directory
~bob= bob’s home directory
. = current working directory
.. = parent directory
- = last working directory

Working with the shell

Command Effect

Left/Right arrow Edit your current command

Up/Down arrow Scroll back and forth through your command history

Control-r Search backwards through your command history

history What commands did I just run?

Control-c Cancel the command

Control-u Clear the current line

Control-a, Control-e Jump to the beginning and end of the line

•  The shell is interactive and will attempt to complete your command as soon
as you press enter

$ pwd!
/Users/mschatz!
!
$ ls!
Desktop/! !Library/! !Public/ ! !bin/! !Documents/ !Movies/!
Downloads/ !Music/ ! !Dropbox/! !Pictures/!

•  Here are a few shortcuts that will make your life easier

Working with files and directories
Create a work directory!
$ cd Desktop!
$ mkdir human_analysis!
$ ls!
$ cd human_analysis/!
!
Download the annotation of the human genome!
$ curl -O http://schatzlab.cshl.edu/teaching/2013/hg19.gff.gz!
!
!

See how big it is!
$ ls –l!
-rw-r--r-- 1 mschatz staff 24904770 Sep 2 22:48 hg19.gff.gz!
!
!

See how big it is in a human readable way!
$ ls –lh!
-rw-r--r-- 1 mschatz staff 24M Sep 2 22:48 hg19.gff.gz!
!
!

Make a copy!
$ cp hg19.gff.gz hg19.2.gff.gz!
$ ls!
!
!

Rename the copy with the move command!
$ mv hg19.2.gff.gz hg19_2.gff.gz!
$ ls!
!
!

delete the copy!
$ rm hg13_2.gff.gz!
$ ls!

Careful what you delete!

Working with (compressed) text files
uncompress compressed files with gunzip!
$ gunzip hg19.gff.gz!
$ ls -lh!
total 1065808!
-rw-r--r-- 1 mschatz staff 520M Sep 2 22:48 hg19.gff!
Notice it is >20 times large!
!
look at the first few lines using the command head!
$ head hg19.gff!
##gff-version 3!
#!gff-spec-version 1.20!
#!processor NCBI annotwriter!
#!genome-build Genome Reference Consortium GRCh37.p13!
#!genome-build-accession NCBI_Assembly:GCF_000001405.25!
#!annotation-source NCBI Homo sapiens Annotation Release 105!
##sequence-region NC_000001.10 1 249250621!
##species http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9606!
NC_000001.10!RefSeq !region !1 !249250621 !. !+ !.

!ID=id0;Name=1;Dbxref=taxon:
•  31267!

How many lines are in the file?!
$ wc -l hg19.gff!
 1937161 hg19.gff!
!
page through the file!
$ less hg19.gff!

Working with annotations with grep
Find just the BestRefSeq annotations!
$ grep BestRefSeq hg19.gff | less!
$ grep BestRefSeq hg19.gff | wc -l!
 922144!
!
Save it to a new file!
$ grep BestRefSeq hg19.gff > hg19.BestRefSeq.gff!
!
$ ls -lh!
total 1599120!
-rw-r--r-- 1 mschatz staff 260M Sep 2 23:11 hg19.BestRefSeq.gff!
-rw-r--r-- 1 mschatz staff 520M Sep 2 22:48 hg19.gff!
!
Count the number of genes!
$ grep gene hg19.BestRefSeq.gff | wc -l!
 922144!
!
That doesnt look right, lets focus on column 3!
$ cut -f3 hg19.BestRefSeq.gff | sort | uniq -c!
387524 CDS!
458708 exon!
26705 gene!
38536 mRNA!
2729 ncRNA!
1620 primary_transcript!
 21 rRNA!
6301 transcript!
!

26,705 annotated genes,
458,708 annotated exons

17 exons / gene on average

Working with annotations with grep (cont)
Have to ensure the whole field is gene with tabs on either side!
$ grep '\tgene\t' hg19.BestRefSeq.gff | wc -l!
 26705!
!
Save the genes to a file!
$ grep '\tgene\t' hg19.BestRefSeq.gff > hg19.BestRefSeq.gene.gff!
!
!
Save it to a new file!
$ grep BestRefSeq hg19.gff > hg19.BestRefSeq.gff!
!
!
!
Count genes per chromosome!
$ cut -f1 hg19.BestRefSeq.gene.gff | sort | uniq -c | sort -nrk1 | head -3!
2426 NC_000001.10!
1632 NC_000019.9!
1510 NC_000002.11!
!
!
!
!
How many chromosomes total!
$ cut -f1 hg19.BestRefSeq.gene.gff | sort | uniq -c | sort -nrk1 | wc -l!
 217!

Should we be surprised that chromosome 1 has the most genes?

Why are there so many chromosomes?

Programming Basics: Loops
•  A bash script is just a list of commands

$ cat simple_script.sh !
#!/bin/sh!
!
echo "Hello, World”!
echo "Shall we play a game?”!
!
$ chmod +x simple_script.sh!
$./simple_script.sh!
!
!
!

•  Things get interesting when we add variables and loops

$ cat loop_script.sh !
#!/bin/sh!
!
for chrom in NC_000001.10 NC_000002.11 NC_000003.11!
do!
 echo Searching $chrom!
 grep $chrom hg19.BestRefSeq.gene.gff > $chrom.BestRefSeq.gene.gff!
done!
!
$ chmod +x loop_script.sh!
$./loop_script.pl!
!
!
!

[What does this do?]

[What does this do?]

Unix Review
Command Output

man Look up something in the manual (also try Google)

ls List the files in the current directory

cd Change to a different directory

pwd Print the working directory

mv, cp, rm Move, copy, remove files

mkdir, rmdir Make or remove directories

cat, less, head, tail, cat Display (parts) of a text file

echo Print a string

sort, uniq Sort a file, get the unique lines

grep Find files containing X

chmod Change permissions on a file

wc Count lines in a file

| (pipe), > (redirect) Send output to a different program, different file

Challenges
•  Where is TP53 located? Where is NRAS?

Where is SRY?

•  How many genes are annotated with “tumor”
or “oncogene”?

•  Create a file with the RefSeqGenes for each
chromosome and sort them by file size

Programming Resources
•  Much like learning a new spoken language, computer languages have their own

syntax and grammar that will be unfamiliar at first, but get easier and easier
over time
•  There are many ways to accomplish the same task
•  You can quickly become a data magician

•  The way to learn a new computer language is to practice speaking it

•  The ~30 commands you have seen today can be combined together into
an infinite number of combinations

•  Lots of good resources available online:
•  http://www.molvis.indiana.edu/app_guide/unix_commands.html
•  http://tldp.org/LDP/abs/html/index.html
•  http://stackoverflow.com/
•  http://google.com

WARNING: Computers are very unforgiving

•  ‘rm –rf /’ <= delete every file on your computer
•  ‘cp junk.doc thesis.doc’ <= overwrite your thesis with junk.doc
•  ‘cat results.partial > results.all’ <= oops, should have appended with >>

Bonus

Files and permissions

•  Every file has an owner and a group, you can only read/write to a file if you
have permission to do so

$ pwd!
/Users/mschatz/Desktop/Unix_and_Perl_course/Data/Arabidopsis!
!
$ ls -l!
total 193976!
-rw-r--r--@ 1 mschatz staff 39322356 Jul 9 2009 At_genes.gff!
-rw-r--r--@ 1 mschatz staff 17836225 Oct 9 2008 At_proteins.fasta!
-rw-r--r--@ 1 mschatz staff 30817851 May 7 2008 chr1.fasta!
-rw-r--r--@ 1 mschatz staff 11330285 Jul 10 2009 intron_IME_data.fasta!

•  These files can be read by anyone, but only written by me

•  Change permissions with ‘chmod’
!
$ chmod g+w At_*! ! ! !!
$ man chmod!

•  Programs and scripts have the execute bit set

$ ls -l /bin/ls!
-r-xr-xr-x 1 root wheel 80688 Feb 11 2010 /bin/ls*!

Editing Files

•  You can open files from the shell using “regular” applications by their extension
$ cp At_genes.gff At_genes.gff.txt!
$ open At_genes.gff.txt!
$ open .!
$ open /Applications/Microsoft\ Office\ 2011/Microsoft\ Word.app/!

•  It is often helpful (or necessary) to edit files within the terminal!
$ nano At_genes.gff!
!
!
Basic nano commands
•  Type to make edits
•  Arrows to move
•  Control-O to save
•  Control-X to exit
•  Control-G for help

Advanced text editors:
•  vi
•  emacs

Background Processes

•  Any number of processes can run in the background
•  Use the ampersand (&) to launch a process into the background
•  Alternatively use control-z to pause a process, then use ‘bg’

!
$ du -a /!
(control-c to cancel)!
!
$ du -a / | sort -nrk1 > ~/filesizes.txt !
(control-z to stop)!
$ bg!
$ du –a / | sort –nrk1 > ~/filesizes.txt.2 &!

•  List running jobs associated with this shell
$ jobs!
$ fg %1!
(control-z to stop)!
$ bg!

•  Kill off run-away commands!
$ ps!

$ kill 61110! ! ! ! ! ! !61110 is the process id I want to kill
$ kill -9 61110 ! ! ! ! ! !kill -9 for really stubborn processes

Monitoring Processes

•  Unix systems can run many commands and by many users at once
•  Especially useful for commands that run for a long time
•  Especially useful for servers that have special resources

$ ps!
 PID TTY TIME CMD!
60820 ttys000 0:00.30 /bin/bash!
!
$ ps aux | head -3!
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND!
root 21527 1.7 0.1 3129268 5692 ?? Ss 11Jul12 679:00.75 /
Library/Application Support/iStat local/iStatLocalDaemon!
mschatz 62928 1.6 1.4 2986576 119648 ?? S 31Jul12 895:05.37 /
System/Library/CoreServices/SystemUIServer.app/Contents/MacOS/SystemUIServer!

•  Monitor use of the system
!
$ top!

(press q to quit)

Working with remote servers

•  Use SSH to connect to a remote server
$ ssh mschatz@bnbdev1.cshl.edu!

•  The server runs UNIX, and the standard commands are available
$ ls –l | sort –nrk5 | head -3!
$ who!

•  There are special lab directories for CSHL users (> 1PB of storage total)
$ df –h /data/schatz* /data/wig*!

•  Your lab may have special commands available
$ ls /data/schatz/software/bin/!
$ /data/schatz/software/bin/samtools!

•  Typing out the full path for every command is a pain, edit your bashrc!
$ nano ~/.bashrc!

(at the bottom add: export PATH=~/bin:/data/schatz/software/bin/:$PATH)
Control-o to save

See: http://intranet.cshl.edu/it/bluehelix/ for details on the shared cluster

Programming Basics: Conditionals
•  Conditionals and loops let us work over any number and type of file
$ cat conditional_script.sh !
#!/bin/sh!
!
for filename in `/bin/ls * | grep –v ”.sh"`!
do!
 type=`echo $filename | cut -f2 -d'.'`!
 echo "Processing $filename, type is $type"!
 echo "=================="!
!
 if [[$type == "fasta"]]!
 then!
 protein_count=`grep -c '>' $filename`!
 hypo_count=`grep -c hypothetical $filename`!
 echo "$filename has $protein_count proteins, $hypo_count are hypothetical"!
 elif [[$type == "gff"]]!
 then!
 echo "$filename stats"!
 cut -f3 $filename | sort | uniq -c!
 else!
 echo "Unknown file type"!
 fi!
!
 echo "=================="!
 echo!
done!
!
!

[What does this do?]

The backtics `<cmd>`
Let us run commands
inside of other commands

Programming Basics: Arguments
•  The shell defines a few special variables to specify input
$ cat argument_script.sh !
#!/bin/sh!
!
if [[$# -lt 2]]!
then!
 echo "USAGE: argument_script.sh proteinsfile type_1 .. type_n"!
 exit!
fi!
!
echo "Script was run as: $0"!
echo "First argument is: $1"!
echo "Second argument is: $2”!
!
proteinsfile=$1!
shift!
!
while [$# -gt 0]!
do!
 type=$1!
 shift!
 count=`grep '>' $proteinsfile | grep -c $type`!
 echo "There are $count $type proteins in $proteinsfile”!
done!
!
$./argument_script.sh At_proteins.fasta F-box GTP-binding hypothetical!
!
!

$# stores number of arguments

$0 has script name
$1-$9 have first 9 arguments

Use shift to access arguments

Loop until there are no more
types to consider

Programming Basics: Functions
•  A function is a reusable block of code
$ cat function_script.sh !
#!/bin/sh!
!
function log()!
{!
 date=`date`!
 echo "$date :: $*"!
}!
!
function processFasta()!
{!
 file=$1!
 log "Processing fasta: $file"!
 num=`grep -c '>' $file`!
 log "There are $num sequences"!
}!
!
function processGFF()!
{!
 file=$1!
 log "Processing gff: $file"!
 num=`wc -l $file`!
 log "There are $num records"!
}!

!
!
!
!
!
for file in `/bin/ls *`!
do!
 log "Processing $file"!
!
 type=`basename $file | cut -f 2 -d'.'`!
!
 if [[$type == "fasta"]]!
 then!
 processFasta $file!
 elif [[$type == "gff"]]!
 then!
 processGFF $file!
 else!
 log "Unknown filetype $type"!
 fi!
done!

Scripting Challenges
1.  Create 1000 files named mutantA.X.txt with X in [1,1000] that contain the

numbers 1 to X
 mutantA.1.txt: 1
 mutantA.2.txt: 1 2
 mutantA.3.txt: 1 2 3
 …

2.  Rename 1000 files named mutantA.X.txt to mutantB.X.txt?
 mutantA.1.txt => mutantB.1.txt
 mutantA.2.txt => mutantB.2.txt
 mutantA.3.txt => mutantB.3.txt
 …

3.  Identify the files in the given directory that contain a specified keyword and
copy them to a specified directory

 ./find_special.sh search_directory 976 destination_directory
 => cp search_directory/mutantB.976.txt destination_directory
 => cp search_directory/mutantB.977.txt destination_directory
 => cp search_directory/mutantB.978.txt destination_directory
 ...

Programming Review

Variables & Arguments

names=Mike!
names="$names Justin"!
names="$names Mickey"!
echo $names!
!
echo "There are $# arguments: $*"!
shift!
echo "The second argument is $1"!

Conditionals

if [[$type == "fasta"]]!
then !

!num=`grep –c ‘>’ $file`!
 !echo "There are $num seqs"!
elif [[$type == "gff"]]!
then!

!num=`wc -l $file`!
 echo "There are $num records"!
else!
 echo "Unknown file type"!
fi!

Loops

rm authors.txt!
for name in Mike Justin Mickey!
do!
 echo $name >> authors.txt!

!c=`cat authors.txt | wc -l`!
!while [$c -gt 0]!
!do!
! !echo $name $c!
! !c=`echo $c-1 | bc`!
!done!

done!

Functions

function log()!
{!
 date=`date`!
 echo “$date :: $*”!
}!
!

for name in Mike Justin James!
do!
 log “Processing $name"!
 echo $name >> authors.txt!
 log "Done with $name”!
done!

